22 research outputs found

    ReFIoV: a novel reputation framework for information-centric vehicular applications

    Get PDF
    In this article, a novel reputation framework for information-centric vehicular applications leveraging on machine learning and the artificial immune system (AIS), also known as ReFIoV, is proposed. Specifically, Bayesian learning and classification allow each node to learn as newly observed data of the behavior of other nodes become available and hence classify these nodes, meanwhile, the K-Means clustering algorithm allows to integrate recommendations from other nodes even if they behave in an unpredictable manner. AIS is used to enhance misbehavior detection. The proposed ReFIoV can be implemented in a distributed manner as each node decides with whom to interact. It provides incentives for nodes to cache and forward others’ mobile data as well as achieves robustness against false accusations and praise. The performance evaluation shows that ReFIoV outperforms state-of-the-art reputation systems for the metrics considered. That is, it presents a very low number of misbehaving nodes incorrectly classified in comparison to another reputation scheme. The proposed AIS mechanism presents a low overhead. The incorporation of recommendations enabled the framework to reduce even further detection time

    An intelligent intrusion detection system for 5G-enabled internet of vehicles

    Get PDF
    The deployment of 5G technology has drawn attention to different computer-based scenarios. It is useful in the context of Smart Cities, the Internet of Things (IoT), and Edge Computing, among other systems. With the high number of connected vehicles, providing network security solutions for the Internet of Vehicles (IoV) is not a trivial process due to its decentralized management structure and heterogeneous characteristics (e.g., connection time, and high-frequency changes in network topology due to high mobility, among others). Machine learning (ML) algorithms have the potential to extract patterns to cover security requirements better and to detect/classify malicious behavior in a network. Based on this, in this work we propose an Intrusion Detection System (IDS) for detecting Flooding attacks in vehicular scenarios. We also simulate 5G-enabled vehicular scenarios using the Network Simulator 3 (NS-3). We generate four datasets considering different numbers of nodes, attackers, and mobility patterns extracted from Simulation of Urban MObility (SUMO). Furthermore, our conducted tests show that the proposed IDS achieved an F1 score of 1.00 and 0.98 using decision trees and random forests, respectively, which means that it was able to properly classify the Flooding attack in the 5G vehicular environment considered

    Birep: a reputation scheme to mitigate the effects of black-hole nodes in delay-tolerant internet of vehicles

    Get PDF
    Delay-tolerant networking (DTN) enables communication in disruptive scenarios where issues such as sparse and intermittent connectivity, long and variable delays, high latency, high error rates, or no end-to-end connectivity exist. Internet of Vehicles (IoV) is a network of the future in which integration between devices, vehicles, and users will be unlimited and universal, overcoming the heterogeneity of systems, services, applications, and devices. Delay-tolerant internet of vehicles (DT-IoV) is emerging and becoming a popular research topic due to the critical applications that can be realized, such as software or map update dissemination. For an IoV to work efficiently, a degree of cooperation between nodes is necessary to deliver messages to their destinations. However, nodes might misbehave and silently drop messages, also known as a black-hole attack, degrading network performance. Various solutions have been proposed to deal with black-hole nodes, but most are centralized or require each node to meet every other node. This paper proposes a decentralized reputation scheme called BiRep that identifies and punishes black-hole nodes in DT-IoV. BiRep is tested on the Prophet routing protocol. Simulation results show excellent performance in all scenarios, comparable or better to other reputation schemes, significantly increasing the delivery ratio of messages
    corecore